
NestCloud: Towards Practical Nested Virtualization

Zhenhao Pan

Tsinghua University,

China

frankpzh@gmail.com

Qing He

Intel Asia-Pacific Research

and Development Ltd

qing.he@intel.com

Wei Jiang

Tsinghua University,

China

jwhust@gmail.com

Yu Chen

Tsinghua University,

China

yuchen@tsinghua.edu.cn

Yaozu Dong

Intel Asia-Pacific Research

and Development Ltd

eddie.dong@intel.com

Abstract—This paper describes a nested virtualization solution,
which allows virtual machine monitor (VMM) with virtual ma-
chine to run within another virtual machine with low overhead.
Previous nested virtualization solutions on x86 platform are
mainly based on emulation, which result in poor performance
and poor usability. We propose and implement NestCloud,
a practical high performance nested virtualization architecture,
which fully employs the hardware virtualization extensions.
Furthermore, three optimizations are provided to reduce the
overhead of nested guests: (1) Guest Page Fault Bypassing,
which permits nested guests to handle page faults without VM
Exit; (2) Virtual EPT (Extended Page Table), which eliminates
unnecessary page faults introduced by shadow page table in
nested VMM; (3) PV VMCS, which provides more effective
VMCS accessing for nested VMM. Experimental results show
that the performance of NestCloud guest is close to single level
guest in both CPU-intensive and memory-intensive benchmarks.
The CPU overhead is 5.22% and the memory overhead is 5.69%,
which makes the nested guest of NestCloud comparable with a
conventional one.

Index Terms—Nested Virtualization, Virtual Machine Monitor
(VMM), Virtual-Machine Control Structure (VMCS)

I. INTRODUCTION

Virtualization has been widely used nowadays. In data

centers and cloud computing environments, virtualization can

largely reduce the hardware costs and resource costs[1], [2],

[3]. There are commercial VMM (Virtual Machine Monitor)

implementations such as VMware[4] and Microsoft Hyper-

V[5], and open source implementations such as Xen[6],

KVM[7], [8], VirtualBox[9] and lguest[10]. Para-virtualization

and full virtualization are two common virtualization tech-

niques. Para-virtualization modifies the guest OS (operating

system) to provide virtualization on legacy processors. Full

virtualization, on the other hand, virtualizes the guest OS

without any modification[11].

Nested virtualization, which is also known as recursive

virtualization[12], allows one VMM to run within a virtual

machine provided by another VMM. Although nested virtu-

alization has not been widely used, we can still list several

important usage models. We believe some of them have great

potential in the future.

• Some latest OS features and applications are neces-

sary to run in virtualization environments. Windows XP

mode[13] is an example, which runs traditional Windows

XP upon Windows 7 by virtualization. It is impossible to

run Windows XP mode when the Windows 7 is already

running in a virtual machine.

• Recently, embedded virtualization technology (A.K.A hy-

pervisor in firmware) has been adopted in some servers,

which means the booted OS is already in a virtual

machine. Nested virtualization can enable the traditional

VMM working normally.

• With help of nested virtualization, it is easy and efficient

to debug and monitor guest OS upon a VMM, and even

VMM itself.

• For future cloud computing environment, the different

virtualization solutions may vary much from each other,

like diverse OS currently. Guest OS images for different

VMMs may not be able to run on or live migrate[14]

between different VMMs. The nested virtualization is a

solution to this problem.

To make virtualization much easier and faster, hardware

vendors like Intel and AMD have added extensions to x86

architecture[11], [15]. Previous researches[16], [17], [18], [19]

show that virtualization can achieve very high performance

with these extensions. But on nested virtualization, current

solutions have far worse performance than conventional vir-

tualization. Previous studies of nested virtualization was de-

signed using micro-kernels[20] or on special virtualizable

hardware architecture[12]. Among the recent virtualization

implementations, only KVM can support nested virtualiza-

tion. Furthermore, KVM only supports AMD-V in nested

virtualization[21]. On Intel processor, KVM can only use

QEMU[22] emulation, which has a very low performance and

is not practical in reality.

Based on the hardware extensions for virtualization, this

paper proposes a new nested virtualization architecture called

NestCloud. NestCloud uses the VMX instructions as inter-

faces, which is general and easy enough to apply to most

VMMs on x86 platform. Benchmark results indicate that

NestCloud only introduces 5.22% CPU overhead and 5.69%

memory overhead.

The remainder of this paper is organized as follows: Section

II introduces the hardware extensions for virtualization (VMX)

and KVM. Section III gives a description to the architecture

design of NestCloud. Section IV explains the implementation

of NestCloud. Section V discusses three optimizations to the

NestCloud. Section VI uses well-known benchmarks such as

SPEC CPU 2006, kernel build and SysBench to evaluate

NestCloud’s performance. At last, Section VII is the related

work and Section VIII is the conclusion and future work.

321

2011 International Conference on Cloud and Service Computing

978-1-4577-1637-9/11/$26.00 ©2011 IEEE
Authorized licensed use limited to: Universidad de la Frontera. Downloaded on May 22,2025 at 20:48:57 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND

In this section, we introduce the background of Intel’s

hardware extensions for virtualization and KVM (Kernel-

based Virtual Machine).

A. Hardware Extensions for virtualization

The classic x86 architecture is not virtualizable according to

Popek and Goldberg’s virtualization requirements[23]. Current

implementations of virtualization on x86 need either patches

on the guest kernel, or hardware changes such as Intel VT[11]

and AMD-V[15]. Xen[6] is an example of the formal one, and

KVM[7] is an example of the latter one. NestCloud is based

on Intel VMX extension[11].

Fig. 1. VMX instruction, interaction of VMM and Guest

Fig.1 represents the instructions of VMX and how VMM

and guests interact with each other. In terms of VMX, two

operation modes are provided. Root operation mode is fully

privileged and used by VMM. On the other hand, non-root

operation mode is not fully privileged and used by guest OS.

Software can enter VMX non-root operation mode using VM

Entry instruction (VMLAUNCH or VMRESUME). In con-

trast, VM Exit is triggered by certain instructions and events

in VMX non-root operation mode, and leads the processor to

root operation mode.

VMX contains a structure called VMCS (Virtual-Machine

Control Structure). Each logical processor associates a mem-

ory region for VMCS, which is called VMCS region. VMCS

regions are organized into six groups: Guest-State area, Host-

State area, VM-execution control fields, VM Exit control

fields, VM Entry control fields, and VM Exit information

fields. Each of them contains one aspect of VMX informa-

tion. For example, both Guest-state area and Host-state area

contain the fields that corresponding to different components

of processor state. When VM Exits happen, processor states

of guest are saved to the Guest-state area and processor states

are loaded from the Host-state area to restore host context.

As shown in Fig.1, VMX also provides several instructions to

manage VMCS regions.

The remaining parts of this paper frequently use VMCS to

refer to a VMCS region associated to one logical processor.

EPT (Extended Page Table)[11] is a hardware extension for

optimizing performance of memory virtualization. When EPT

is active, separate page tables are provided to translate guest-

physical addresses to the host-physical addresses. Meanwhile

the traditional page tables finish the translation from guest-

liner address to guest-physical address.

EPT takes over the technique of shadow page table, avoids

the expensive VM Exits and complex handling procedures of

guest page faults, and therefore brings programming flexibility

and performance improvement. Besides, EPT avoids memory

usage of shadow page table which needs a whole copy of guest

page tables.

B. KVM

KVM (Kernel-based Virtual Machine)[7] is a virtualization

solution integrated in Linux kernel, which consists of a load-

able kernel module that provides the core virtualization infras-

tructure and a processor specific module. As a kernel module

in Linux, KVM leverages existing Linux features and provides

an integrated VMM approach. Virtual CPUs (vCPUs) of KVM

guests are normal threads in the host OS, while memories

of KVM guests are mapped into the memory space of their

corresponding threads. KVM is a relatively new but mature

virtualization solution for Linux on x86 architecture. Studies

show the KVM has comparable performance to Xen[24].

III. ARCHITECTURE

Using QEMU[22], KVM is able to run nested virtualization

with low performance compare to conventional virtualization.

Guest’s code can be accelerated on the physical processor by

virtualization extensions. In the nested environment however,

there is only one VMM can run on the real hardware and

utilize hardware extensions. The nested VMM only has a

hardware layer provided by the underlying VMM, which has

no hardware extension.

Fig. 2. Three-Level Nested Virtualization Architecture

We designed NestCloud, a three-level architecture for nested

virtualization. NestCloud provides the ability to use the hard-

ware extensions for the nested VMM. Fig.2 represents the

322
Authorized licensed use limited to: Universidad de la Frontera. Downloaded on May 22,2025 at 20:48:57 UTC from IEEE Xplore. Restrictions apply.

architecture of NestCloud. Fig.2 can be separated into two

parts. Part A is the traditional architecture, which includes a

normal guest and a VMCS associated with the vCPU (virtual

CPU) where guest OS OS1 runs on. Part B is the architecture

of NestCloud, which consists of three levels. In level 0 runs

L0 VMM, which is a modified VMM running on the real

hardware. Components in level 1 can either be a guest or a

VMM. Component in level 1 is called L1 VMM when it is a

VMM, and L0 VMM is transparent to it. Hardware layer of

L1 VMM is provided by L0 VMM. Like a typical VMM, L1

VMM can create its own guest. Components on Level 2 are

nested guests, which are called L2 Guest in this paper.

In NestCloud, no modification on L1 VMM or L2 Guest

OS is needed. Optimizations provided in the following sections

may need slight modification on L1 VMM, and we will discuss

it later.

Focusing on VMX extension, only L0 VMM runs in VMX

root operation mode. L1 VMM and L2 Guest run in VMX

non-root operation mode. NestCloud provide a nested VMX

interface to L1 VMM in order to accelerate L2 Guest using

VMX extension. The following subsections explains the nested

interface.

Fig. 3. Non-Nested Virtualization CPU Execution Flow

Fig. 4. Nested Virtualization CPU Execution Flow

A. Nested VMX Interface

As we described in Section II, VMCS, which controls

the transition of two operation modes, is the most impor-

tant component in VMX. In conventional virtualization, one

VMCS is associated with one logical processor. In nested

virtualization, the L1 VMM not only has its own logical

processor (intrinsic vCPU), but also has L2 Guest’s logical

processor inside (shadow vCPU). When L2 Guest is running,

the VMCS of its logical processor is supposed to be associated

with the physical processor, thus the support of VMCS needs

to be extended.

NestCloud proposes three concepts of VMCS: the intrin-

sic VMCS (iVMCS), the shadow VMCS (sVMCS) and the

physical VMCS (pVMCS). The first two are correspond to

the L1 VMM’s VMCS and the L2 Guest’s VMCS. The last

one is the VMCS used by the physical processor. They have

the relationship as following:

pVMCS =

{

iV MCS when running in L1 Guest(1)

sVMCS when running in L2 Guest(2)

For VMX instructions, NestCloud uses the traditional trap-

and-emulate method. VMX instructions issued by L1 VMM

will cause VM Exit and be trapped into L0 VMM. Using

instruction parameters got from VM Exit reasons, L0 VMM

handles the requests and operations on the real VMX exten-

sion. In this way, L1 VMM can use VMX extension to improve

the performance of L2 Guests.

B. Nested CPU Execution Flow

In a non-nested guest, the execution flow with VMX is

shown in Fig.3. At time A, the VMM issues a VM Entry

instruction to wake up the guest, and the system turns into

non-root operation mode. During T2, guest’s instructions are

executed on the physical processor directly. At time B, VM

Exit happens, and the processor execution turns back to the

VMM to handle the VM Exit event.

Fig.4 is the CPU execution flow in NestCloud, which in-

volves the three levels’ interaction. At time A, L0 VMM issues

a VM Entry to turn on L1 VMM. L1 VMM issues the virtual

VM Entry at time B, which causes a VM Exit and the switch

of VMCS from VMCS2(iVMCS) to VMCS21(sVMCS). At

time C, L0 VMM issues the real VM Entry which calls up L2

Guest. So far, the L2 Guest can get a running opportunity

during T4. The L2 Guest keeps running on the physical

processor until a virtual VM Exit happens at time D.

C. Handling VM Exits

The procedure of handling VM Exits from L2 Guest differs

in NestCloud. Unlike non-nested situation, where VM Exits

are all handled by the VMM. In NestCloud, L0 VMM needs

to decide the handler of VM Exits. If a VM Exit is due to L0

VMM, shadow page faults and external IRQs for example, L0

VMM handlers will handle it.

If L1 VMM is responsible for the VM Exit, L1 VMM

should be turned on to handle it. In this situation, pVMCS

needs to be switched to iVMCS, and a virtual VM Exit

needs to be injected into L1 VMM. The virtual VM Exit

is constructed according to EXIT REASON in vVMCS. If

the switch is due to virtual IRQs, a new EXIT REASON is

generated.

If the VM Exit is due to L2 Guest, L0 VMM will inject a

virtual VM Exit to L1 VMM, and L1 VMM will read the VM

Exit reason and inject it to L2 Guest. Events such as L2 page

faults are handled this way.

323
Authorized licensed use limited to: Universidad de la Frontera. Downloaded on May 22,2025 at 20:48:57 UTC from IEEE Xplore. Restrictions apply.

IV. IMPLEMENTATION

In this section, we describes the implementation details of

NestCloud.

Fig. 5. Nested VMCS Design

A. Nested VMCS Implementation

In nested VMCS implementation, the iVMCS for L1 VMM

is in the L0 VMM’s memory space. The sVMCS is constructed

by L0 VMM according to VMCS for L2 Guest in the L1

VMM’s memory space, which is also called vVMCS. In order

to simplify the procedure of accessing vVMCS, a copy of

vVMCS is kept in L0 VMM’s memory and synchronized with

L1 VMM. Fig.5 represents their relationships.

B. Trap-and-emulation of VMX Instructions

When L1 VMM issues a VMX instruction, it generates a

VM Exit which is trapped by L0 VMM. A handler in L0 VMM

will handle the VMX instructions on behalf of the L1 VMM.

These handlers take advantages of the real VMX extension

which makes the performance of L2 Guest close to L1 Guest.

Five VMCS maintenance instructions and five VMX man-

agement instructions are provided by VMX extension[11], and

all of them has a corresponding handler in L0 VMM. Here we

describe implementation details of some important instructions

handlers.

1) Virtual VMPTRLD/VMPTRST Handling: VMPTRLD

[11] loads the current VMCS region pointer from memory. The

handler of VMPTRLD fetches the address of the new VMCS

region by decoding the VM Exit reason, and synchronizes the

L0 VMM’s copy of vVMCS. For later reference, the address of

the new VMCS region is also saved in L0 VMM. VMPTRST

stores the current VMCS pointer into memory, and the handler

is similar. The vVMCS in L1 VMM is synchronized with the

copy in L0 VMM, and the saved address is returned.

2) Virtual VMCLEAR Handling: VMCLEAR ensures all

fields of VMCS are copied to VMCS region[11]. The handler

of this instruction just synchronizes the L0 VMM’s cached

copy with the vVMCS in L1 VMM’s memory.

3) Virtual VMREAD/VMWRITE Handling: VMREAD

reads a specified VMCS field[11]. The handler works as

follows: (1) Decoding VMREAD information from the exit

information of VM Exit. (2) Reading the specified field from

the L0 VMM’s vVMCS copy. (3) Saving the value to the

specified register in the exit information. The handler of

VMWRITE works similar. It does the writing on vVMCS copy

instead of reading.

4) Virtual VMLAUNCH/VMRESUME Handling: These two

instructions launch or resume a guest managed by current

VMCS and then transfer control to the guest[11]. They are

handled in the same way in nested virtualization environ-

ment. In Fig.3, “VMENTRY” and “Virtual VMENTRY” are

examples of these two instructions. VMPTRST, VMPTRLD

and VMCLEAR are preparations of these two instructions.

The pVMCS differs before and after the VMRESUME. It

points to iVMCS when L1 VMM is running, and points to

sVMCS when L2 Guest is running. When L0 VMM handles

VMRESUME, the pVMCS should be switched from iVMCS

to sVMCS. After pVMCS switching, L0 VMM can enter L2

Guest by a real VMRESUME instruction.

V. OPTIMIZATIONS

Section IV introduces the implementation of NestCloud.

In this section we describe the optimizations on NestCloud.

The goal of optimizations is to eliminate the performance gap

between L2 Guest and L1 Guest. We provide 3 optimizations

including Guest Page Fault Bypassing, Virtual EPT and PV

VMCS. The idea of these optimizations is to reduce the

transitions between L0, L1 and L2, which are considered as

one of the root causes of the overhead.

A. Guest Page Fault Bypassing

Page faults can occur for a variety of reasons. In some

cases, page faults alert the VMM to an inconsistency between

the page table and its shadow copy[25]. In other cases, the

hierarchies are already consistent and the page fault should be

handled by the guest OS. The formal cases are called shadow

page faults and can only be handled by the VMM, while the

latter cases do not need interceptions of VMM at all.

The optimization of guest page fault bypassing makes

the L2 Guest handle its own page faults without causing

a VM Exit to save transition time. It is implemented by

a feature of VMX. VMX provides 2 registers in VMCS:

PFEC MASK and PFEC MATCH. When the page fault

error code (PFEC) matches these 2 registers (PFEC &

PFEC MASK = PFEC MATCH), the page fault will be

delivered through guest’s IDT without causing a VM Exit[11].

In this optimization, PFEC MASK and PFEC MATCH are set

to 1, so that page faults caused by non-present pages do not

cause VM Exit at all. The key information to separate 2 page

fault cases is that the reason of shadow page fault cannot be

non-presented pages. In such a way, only page faults of L2

Guest are bypassed.

Not all page faults of L2 Guest are caused by non-presented

pages. This optimization does not work for the page faults

324
Authorized licensed use limited to: Universidad de la Frontera. Downloaded on May 22,2025 at 20:48:57 UTC from IEEE Xplore. Restrictions apply.

caused by illegal access or other reasons. To judge the ef-

fectiveness of this optimization, we collect the count of page

faults during a kernel building. KVMTrace[7] is a module in

Linux kernel which can record the KVM event timestamps

and event parameters. It is used to count the page faults of

VM Exit from L2 Guest.

Page faults coming from L2 Guest are separated into 3

categories: (1) L0 shadow page fault, which is solved by L0

directly; (2) L1 shadow page fault, which is injected into and

handled by L1 VMM; (3) L2 page fault, which is injected

into L2 guest through L1 VMM. The expected effect of this

optimization is reducing the count of L2 page faults we caught.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

Total PF L0 shadow PF L1 shadow PF L2 PF

P
a
g
e
 F

a
u
lt
 E

v
e
n
t
N

u
m

b
e
r

Total PF and PF Breakdown

Original
Bypass

Fig. 6. Guest Page Fault Bypassing in Kernel Building

Fig.6 shows a 60 seconds sample of page fault count. In

the meantime, we get a 5% performance gain during kernel

building. The count of VM Exits caused by L2 page faults is

reduced by 35% after the guest page fault bypassing. In the

meanwhile, the L0 shadow page fault is increased by 6.2% due

to the performance gain (L2 Guest did more during 60 seconds

sample). Because only 13.13% of page faults are L2 page

faults, the performance gain is not as good as we expected.

B. Virtual EPT Support

EPT can largely improve guest’s performance. In this opti-

mization, a concept of virtual EPT is proposed. Virtual EPT

support is used in L1 VMM and works for L2 Guest’s page

table. Consequently, the EPT support provided by hardware is

called host EPT.

Host EPT has already been supported by KVM as we

described in Section II. It also creates a great performance

gain on nested virtualization. But currently, EPT has not been

supported in L1 VMM. Address translation of L2 Guest has

to use the shadow page table mechanism and causes a lot of

VM Exits.

We present a full EPT interface to L1 VMM by

trapping all the EPT events from L1 VMM, and for-

ward them directly to the real hardware. Meanwhile, the

hardware EPT events are injected into L1 VMM by

L0 VMM, such as EXIT REASON EPT VIOLATION and

EXIT REASON EPT MISCONFIG. With virtual EPT, VM

Fig. 7. Virtual EPT Support

Exit by shadow page table will be significantly reduced and

the performance can get a boost. Notice that virtual EPT is

supported only when the host EPT is enabled, because the

virtual EPT is implemented by forwarding events to the host

EPT. Fig.7 shows how the host EPT and virtual EPT work.

TABLE I
L1 VMM EVENTS BREAKDOWN

Event Percentage

VMREAD 67%
VMWRITE 19%
Exception 7%
VMRESUME 6%
Others 1%

C. PV VMCS

In order to uncover the performance bottleneck of L1 VMM,

we collected statistic information on the VMX events during

kernel building. Table I is the breakdown of all events in L1

Guest VM Exit reasons. 86% of VM Exits are due to VM-

READ and VMWRITE. Before optimization, every time when

L1 VMM accesses a vVMCS field, VMREAD or VMWRITE

causes a transition from L1 VMM to L0 VMM, and L0 VMM

will access the field in vVMCS copy. Actually, L1 VMM has

its own copy of vVMCS, thus it has full knowledge to perform

VMREAD and VMWRITE by itself.

Fig. 8. Before PV VMCS Optimization

In order to enable vVMCS access in L1 VMM, we need

to expose vVMCS layout and accessing method in L1 VMM.

Besides, L0 VMM should be slightly modified too. As we

mentioned in Section III, L0 VMM holds a vVMCS copy,

which is synchronized with vVMCS in L1’s memory. This

copy should be updated explicitly in this optimization. Fig.8

and 9 shows the PV VMCS optimization of VMREAD.

The effect of PV VMCS varies according to different

applications. The PV VMCS needs modifications on the L1

325
Authorized licensed use limited to: Universidad de la Frontera. Downloaded on May 22,2025 at 20:48:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. After PV VMCS Optimization

VMM, which is not applicable in some situations such as

commercial virtualization solutions.

VI. EVALUATION

We have implemented NestCloud and the optimizations on

KVM-84[7]. In this section, we evaluate the performance of

NestCloud. We try to prove that: (1) NestCloud is better than

the nested solution of QEMU on KVM (2) With optimizations,

the performance of NestCloud is close to that of L1 Guest on

CPU and memory.

Most evaluations have 7 situations: L1 (L1 Guest perfor-

mance), QEMU (nested virtualization using QEMU emulation

with host EPT), Basic (implementation of NestCloud with no

optimization), Bypass (using both L1 VMM and L2 Guest

page fault bypassing), PV VMCS (BASIC with PV VMCS),

Host EPT (BASIC with host EPT), Host/Virtual EPT (BASIC

with host and virtual EPT), Host/Virtual EPT + PV VMCS

(BASIC with host EPT, virtual EPT, and PV VMCS). Our goal

is to make the performance of L2 Guest close to a normal guest

(performance of L1 Guest with host EPT), thus some results

are normalized to L1.

A. Environment and benchmarks

We performed all experiments on a server with a VT-enabled

Intel core i7-920 and 6 GB memory. The host/guest OS used

in our tests is Ubuntu 9.04. The L0 VMM’s kernel is KVM-

84[7] with NestCloud; the L1 Guest’s kernel is KVM-84 with

no modification; and the L2 Guest uses original kernel of

Ubuntu 9.04. To make the L2 Guest time accurate, KVM PV-

TIMER module (CONFIG KVM CLOCK=y) is enabled in

the L2 Guest kernel.

VMX extension is used for CPU virtualization, which is the

focus of our tests. SPEC CPU 2006[26], [27] is an industry-

standardized, CPU-intensive benchmark suite. It contains two

test packages: CINT tests and CFP tests. Benchmarks in SPEC

CPU 2006 are derived from real world applications. They

spend at least 95% of its execution time in user space[27].

SysBench-CPU[28] uses calculation of prime numbers up to

a specified value, and the result is valued in running time.

In addition, we use SysBench-Memory[28] to measure the

memory performance. To get I/O performance, SysBench

OLTP[28] is used. OLTP stands for On-Line Transaction

Processing. SysBench OLTP keeps generating transactions for

MySQL when it is running.

TABLE II
SYSBENCH-CPU RESULTS

Results(s)

L1 36.0535
Basic 38.2076
Bypass 38.7977
Host EPT 40.7520
Host EPT + Virtual EPT 38.4142
PV VMCS 37.8735
PV VMCS, Host EPT + Virtual EPT 37.9351
QEMU 785.7888

B. CPU Performance

The results of SysBench-CPU is presented in Table II.

Differences between Basic situation and situations with op-

timizations are quite small, and they are about 21 times faster

than QEMU. In the situation of Host/virtual EPT and PV

VMCS, L2 Guest introduces 5.22% overhead compare to L1

Guest.

The VMX interface of NestCloud enables the L2 Guest’s

instruction to execute on the physical CPU directly. In a CPU-

intensive benchmark like SysBench-CPU, the overhead of an

additional level is quite small.

SPEC CPU 2006 on QEMU nested environment has very

low performance, and some benchmarks fail to get a result.

Here we only provide bzip2 and gcc results in Table III, which

shows that the QEMU nested virtualization can only get about

5% of a L1 Guest’s performance.

TABLE III
QEMU NESTED SPEC CPU 2006 RESULTS

L1 QEMU

bzip2 756 11872
gcc 420 8109

Fig.10 shows 12 results of CINT benchmarks, and Fig.11

shows the results of CFP benchmarks. These results are

normalized to L1 Guest’s results. Compare to SysBench-CPU,

SPEC CPU 2006 is a mixed benchmark, which consists of

CPU workload, memory workload and a little bit of I/O work-

load. The effects of optimizations varies between different

tests.

1) Effect of virtual EPT: Virtual EPT works extremely well

in some of the benchmarks, including gcc in CINT, soplex

and tonto in CFP. After an investigation on these benchmarks,

we figure out that these benchmarks perform many memory

allocations and freeings[29]. These activities lead to page table

changes, and therefore provide bad results with shadow page

table. In the following subsection, we will discuss performance

of shadow page table in detail.

Also, virtual EPT does not work in some cases, including

sjeng, xalancbmk in CINT and bwaves, zeusmp and lbm in

CFP. The performance of Intel EPT has lower performance un-

der: (1) little MMU activity (2) high TLB miss rate[30]. And,

all these benchmarks have relatively higher TLB miss rate[31],

326
Authorized licensed use limited to: Universidad de la Frontera. Downloaded on May 22,2025 at 20:48:57 UTC from IEEE Xplore. Restrictions apply.

 0

 0.1

 0.2

 0.3

 0.4

 0.5
 0.6

 0.7

 0.8

 0.9

 1

perlbench

bzip2

gcc
m

cf
gobm

k

hm
m

er

sjeng

libquantum

h264ref

om
netpp

astar

xalancbm
k

AVGL
2
/L

1
 P

e
rf

o
rm

a
n
c
e
 R

a
d
io

CINT Benchmarks

Basic
Bypass

PV VMCS
Host EPT

Host/Virtual EPT
Host/Virtual EPT + PV VMCS

Fig. 10. SPEC CPU 2006 CINT Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

bw
aves

gam
ess

m
ilc

zeusm
p

grom
acs

cactusAD
M

leslie3d

nam
d

dealll

soplex

povray

calculix

G
em

sFD
TD

tonto
lbm

w
rf

sphinx3

AVGL
2
/L

1
 P

e
rf

o
rm

a
n
c
e
 R

a
d
io

CFP Benchmarks

Basic
Bypass

PV VMCS
Host EPT

Host/Virtual EPT
Host/Virtual EPT + PV VMCS

Fig. 11. SPEC CPU 2006 CFP Results

together with few memory allocation/freeing activities[29].

2) Effect of PV VMCS: Actually, PV VMCS is a trade-

off that works only when the frequency of VMREAD and

VMWRITE is high enough. In a rare case, the synchronization

cost of vVMCS is larger than the performance gain, and this

optimization will get worse result. The test of libquantum in

CINT is an example. PV VMCS works for it, but does not

work when virtual EPT is also applied. The reason is that vir-

tual EPT will significantly reduce the VMREAD/VMWRITE

caused by page faults, and PV VMCS will not work as good

as before. Similar results can be found in the test of PF-Bench

following.

In conclusion, L2 Guest with optimizations can achieve

88.08% of L1 Guest in CINT benchmarks and 85.68% of L2

Guest in CFP benchmarks, which means 13.53% and 16.71%

overhead.

C. Memory Performance

Table IV shows the result of SysBench-Memory. Similar to

SysBench-CPU results, Basic situation and optimized situation

vary slightly. Also, they are about 11 times faster than QEMU

because of the VMX interface. The best result of SysBench-

Memory presents 5.69% overhead compare to L1 Guest.

TABLE IV
SYSBENCH-MEMORY RESULTS

Results(s)

L1 54.1131
Basic 57.6744
Bypass 57.3680
Host EPT 57.3903
Host EPT + Virtual EPT 57.3920
PV VMCS 56.6564
PV VMCS, Host EPT + Virtual EPT 56.5042
QEMU 647.9132

In order to measure our optimization effort on page faults,

we design a micro-benchmark called PF-Bench, which keeps

generating page faults when it is running. Page faults in

L2 Guest without any optimization are heavy. Each of them

triggers several VM Exits and VM Entries, and lets the CPU

go back-and-forth between L0 VMM and L1 VMM. When L2

Guest is handling page faults, it modifies the page table, and

triggers a L1 shadow page fault. When the memory pages

of L2 Guest page faults are also absent from L1 VMM’s

page table, they trigger another page faults of L1 VMM.

Furthermore, L1 VMM can also trigger L0 shadow page faults

327
Authorized licensed use limited to: Universidad de la Frontera. Downloaded on May 22,2025 at 20:48:57 UTC from IEEE Xplore. Restrictions apply.

TABLE V
PF-BENCH RESULTS

Results(s)

L0 Performance 1.37
L1 23.85
Basic 501.01
Bypass 470.25
Host EPT 358.98
Host EPT + Virtual EPT 2.39
PV VMCS 71.01
PV VMCS, Host EPT + Virtual EPT 5.6
QEMU 35.90

when it is modifying its page table. Every page fault from L2

Guest triggers a page fault chain, which cost much CPU time.

The results are given as running time in Table V. Bypass

works for page faults of L2 Guest. It eliminates the back-and-

forth of L2 Guest page fault, and has a 6.54% performance

gain. Host EPT works for L0 shadow page faults, and it has

an acceleration of 39.56%. PV VMCS largely reduces the

cost of VM Entry and VM Exit between L1 VMM and L2

Guest, and has a speedup of 605.55%. The best optimization

is virtual EPT, it is 150+ times faster than Basic. The result

of QEMU is better than Basic, and even better than several

optimized situations such as Bypass and Host EPT. This is

because QEMU does not use shadow page table, and avoids

the heavy work of back-and-forth between levels.

D. I/O Performance

TABLE VI
SYSBENCH-OLTP RESULTS

Results(t/s)

L1 535
Basic 13.92
Bypass 16.34
Host EPT 16.19
Host EPT + Virtual EPT 44.38
PV VMCS 19.12
PV VMCS, Host EPT + Virtual EPT 48.96
QEMU 13.23

Table VI is the test results of SysBench OLTP benchmark.

The performance of L2 Guest is only 10% of the L1 Guest’s.

The low performance of I/O in L2 is understandable, since all

the I/O operations needs back-and-forth between 3 levels just

like the situation of page fault. However, the best optimization

result is 3.7 times better than the QEMU nested.

In this paper, we do not explicitly optimize the I/O perfor-

mance. The OLTP test uses emulated I/O, which depends on

IRQ injection and foreign memory accessing. They are heavy

in L1 VMM, because they all need interception of L0 VMM.

Optimizations on them are listed as future work.

VII. RELATED WORK

Nested virtualization (A.K.A recursive virtualization) has

a history of more than 30 years. In 1976, the Kernelized

VM/370 was able to run a VMM recursively in a virtual

machine but suffered from performance[28]. A study by Hugh

et al.[12] proposes a computer system with recursive virtual

machine architecture, whose central idea is the ability of any

process to define a new virtual memory within its own virtual

memory. Based on this idea, Bryan et al.[20] use the micro-

kernel to propose a novel approach to develop a software-based

virtualizable architecture called Fluke. Fluke allows recursive

virtual machine, and can easily deploy arbitrary level of nested

virtual machines.

Blue Pill[32] is targeted for security in Windows. It is a

thin VMM to control the OS and is responsible for controlling

“interesting” events inside the guest OS. Nested virtualization

is one of the features it supports, and is implemented on AMD

SVM. IBM z/VM[33] VMM also supports running a nested

z/VM OS, but is intended only for testing purposes, and do

not care much about the performance[34].

The turtles project[35] is a recent solution for nested virtual-

ization. It has a different idea from us. It multiplexes multiple

levels of virtualization into one level on CPU virtualization.

On memory virtualization, it uses an idea of multi-dimensional

page table. Compare to their evaluation, NestCloud get a

similar performance overhead.

To make virtualization much easier and faster, lots of studies

have been performed in both software fields[17], [18], [36],

[37], [38] and hardware fields[11], [15], [39], but they do not

address efficiency of nested virtualization.

VIII. CONCLUSIONS AND FUTURE WORK

Nested virtualization can be used in several usage models

such as debugging and live migration. In this paper we present

the design, implementation and evaluation of NestCloud, a

three-level nested virtualization architecture for practical high

performance nested virtualization. We have minimized the

overhead caused by the additional level by three optimiza-

tions. The evaluation demonstrates that the implementation

of NestCloud introduces 5.22% overhead on CPU and 5.69%

overhead on memory, and is close to a conventional one.

The I/O performance of NestCloud is relatively low com-

pared to a conventional guest, and optimizing it is the most

relevant future work. I/O virtualization bypassing which by-

passes an I/O device in L1 VMM to L0 VMM is a potential

optimization. Direct access to I/O devices for L2 Guests can

also be a solution. In addition, the support of SMP is another

future work, which needs to deal with problems such as

vCPU migration. The live migration of L2 Guest to other L1

VMM and L0 VMM on the same physical machine is also an

interesting future work.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science

Foundation of China (Grant No. 61170050).

REFERENCES

[1] R. P. Goldberg, “Survey of Virtual Machine Research,” Computer, 1974.
[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view
of cloud computing,” Commun. ACM, vol. 53, pp. 50–58, April 2010.
[Online]. Available: http://doi.acm.org/10.1145/1721654.1721672

328
Authorized licensed use limited to: Universidad de la Frontera. Downloaded on May 22,2025 at 20:48:57 UTC from IEEE Xplore. Restrictions apply.

[3] ——, “Above the clouds: A berkeley view of cloud computing,” Tech.
Rep., Feb. 2009.

[4] “Vmware,” www.vmware.com.

[5] “Microsoft hyper-v,” http://www.microsoft.com/hyper-v-server/.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” SIGOPS Oper. Syst. Rev., vol. 37, pp. 164–177, October
2003. [Online]. Available: http://doi.acm.org/10.1145/1165389.945462

[7] “Kvm,” http://www.linux-kvm.org/.

[8] K. Avi, “Kvm : The linux virtual machine monitor,” Proceedings

of the Ottawa Linux Symposium, 2007. [Online]. Available:
http://ci.nii.ac.jp/naid/10024661906/en/

[9] “Virtualbox,” http://www.virtualbox.org/.

[10] R. Russell, “lguest: Implementing the little linux hypervisor,” Proceed-

ings of the Ottawa Linux Symposium, pp. 173–177, 2007.

[11] R. Uhlig, G. Neiger, D. Rodgers, A. Santoni, F. Martins, A. Anderson,
S. Bennett, A. Kagi, F. Leung, and L. Smith, “Intel virtualization
technology,” Computer, vol. 38, no. 5, pp. 48 – 56, May 2005.

[12] H. C. Lauer and D. Wyeth, “A recursive virtual machine architecture,”
in Proceedings of the workshop on virtual computer systems. New
York, NY, USA: ACM, 1973, pp. 113–116. [Online]. Available:
http://doi.acm.org/10.1145/800122.803951

[13] “Windows xp mode and windows virtual pc,”
http://www.microsoft.com/windows/virtual-pc/default.aspx.

[14] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,” in
Proceedings of the 2nd conference on Symposium on Networked Systems

Design & Implementation - Volume 2, ser. NSDI’05. Berkeley, CA,
USA: USENIX Association, 2005, pp. 273–286. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1251203.1251223

[15] AMD, AMD64 Virtualization Codenamed ”Pacifica” Tech-

nology: Secure Virtual Machine Architecture Ref-

erence Manual, May 2005. [Online]. Avail-
able: http://www.mimuw.edu.pl/ vincent/lecture6/sources/amd-pacifica-
specification.pdf

[16] L. Cherkasova and R. Gardner, “Measuring cpu overhead
for i/o processing in the xen virtual machine monitor,” in
Proceedings of the annual conference on USENIX Annual

Technical Conference, ser. ATEC ’05. Berkeley, CA, USA:
USENIX Association, 2005, pp. 24–24. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1247360.1247384

[17] A. Menon, A. L. Cox, and W. Zwaenepoel, “Optimizing network
virtualization in xen,” in Proceedings of the annual conference

on USENIX ’06 Annual Technical Conference. Berkeley, CA,
USA: USENIX Association, 2006, pp. 2–2. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1267359.1267361

[18] J. R. Santos, Y. Turner, G. Janakiraman, and I. Pratt,
“Bridging the gap between software and hardware techniques
for i/o virtualization,” in USENIX 2008 Annual Technical

Conference on Annual Technical Conference. Berkeley, CA,
USA: USENIX Association, 2008, pp. 29–42. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1404014.1404017

[19] K. Adams and O. Agesen, “A comparison of software and
hardware techniques for x86 virtualization,” in Proceedings of

the 12th international conference on Architectural support for

programming languages and operating systems, ser. ASPLOS-XII.
New York, NY, USA: ACM, 2006, pp. 2–13. [Online]. Available:
http://doi.acm.org/10.1145/1168857.1168860

[20] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and S. Clawson,
“Microkernel meet recursive virtual machines,” in USENIX 2nd

Symposium on Operating Systems Design and Implementation, Oct.
1996. [Online]. Available: http://eprints.kfupm.edu.sa/50691/

[21] “Kvm nested virtualization in the works,” http://www.linux-
kvm.com/content/kvm-nested-virtualization-works.

[22] F. Bellard, “Qemu, a fast and portable dynamic translator,”
in Proceedings of the annual conference on USENIX Annual

Technical Conference, ser. ATEC ’05. Berkeley, CA, USA:
USENIX Association, 2005, pp. 41–41. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1247360.1247401

[23] G. J. Popek and R. P. Goldberg, “Formal requirements
for virtualizable third generation architectures,” Commun. ACM,
vol. 17, pp. 412–421, July 1974. [Online]. Available:
http://doi.acm.org/10.1145/361011.361073

[24] T. Deshane, Z. Shepherd, J. Matthews, M. Ben-Yehuda, A. Shah, and
B. Rao, “Quantitative comparison of Xen and KVM,” in Xen summit.
Berkeley, CA, USA: USENIX association, Jun. 2008.

[25] “Virtualization system including a virtual machine monitor for a com-
puter with a segmented architecture,” U.S. Patent US 6,397,242 B1,
2002.

[26] “Spec cpu 2006,” http://www.spec.org/cpu2006/.
[27] D. Ye, J. Ray, and D. Kaeli, “Characterization of file i/o activity for spec

cpu2006,” SIGARCH Comput. Archit. News, vol. 35, pp. 112–117, March
2007. [Online]. Available: http://doi.acm.org/10.1145/1241601.1241622

[28] “Sysbench,” http://sysbench.sourceforge.net/docs/.
[29] J. L. Henning, “Spec cpu2006 memory footprint,” SIGARCH Comput.

Archit. News, vol. 35, pp. 84–89, March 2007. [Online]. Available:
http://doi.acm.org/10.1145/1241601.1241618

[30] “Performance evaluation of intel ept hardware assist,”
http://www.vmware.com/resources/techresources/10006.

[31] J. L. Henning, “Performance counters and development of spec
cpu2006,” SIGARCH Comput. Archit. News, vol. 35, pp. 118–121, March
2007. [Online]. Available: http://doi.acm.org/10.1145/1241601.1241623

[32] J. Rutkowska, “Introducing blue pill,” Tech. Rep., 2006. [Online]. Avail-
able: http://theinvisiblethings.blogspot.com/2006/06/introducingblue-
pill.html

[33] “Ibm z/vm,” http://www.vm.ibm.com/pubs/hcsf8b22.pdf.
[34] “Ibm virtual machine facility /370: Release 2 planning guide,” IBM

Corporation, Tech. Rep. GC20-1814-0, 1973.
[35] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El,

A. Gordon, A. Liguori, O. Wasserman, and B.-A. Yassour, “The
turtles project: design and implementation of nested virtualization,”
in Proceedings of the 9th USENIX conference on Operating

systems design and implementation, ser. OSDI’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 1–6. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1924943.1924973

[36] G. Liao, D. Guo, L. Bhuyan, and S. R. King, “Software techniques
to improve virtualized i/o performance on multi-core systems,” in
Proceedings of the 4th ACM/IEEE Symposium on Architectures for

Networking and Communications Systems, ser. ANCS ’08. New
York, NY, USA: ACM, 2008, pp. 161–170. [Online]. Available:
http://doi.acm.org/10.1145/1477942.1477971

[37] D. Guo, G. Liao, and L. N. Bhuyan, “Performance characterization and
cache-aware core scheduling in a virtualized multi-core server under
10gbe,” in Proceedings of the 2009 IEEE International Symposium

on Workload Characterization (IISWC), ser. IISWC ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 168–177. [Online].
Available: http://dx.doi.org/10.1109/IISWC.2009.5306784

[38] Y. Dong, X. Zheng, X. Zhang, J. Dai, J. Li, X. Li, G. Zhai, and H. Guan,
“Improving virtualization performance and scalability with advanced
hardware accelerations,” in Workload Characterization (IISWC), 2010

IEEE International Symposium on, dec. 2010, pp. 1 –10.
[39] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan, “High performance

network virtualization with sr-iov,” in High Performance Computer

Architecture (HPCA), 2010 IEEE 16th International Symposium on, jan.
2010, pp. 1 –10.

329
Authorized licensed use limited to: Universidad de la Frontera. Downloaded on May 22,2025 at 20:48:57 UTC from IEEE Xplore. Restrictions apply.

